
Journal of Basic and Applied Engineering Research 
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 5; January-March, 2015, pp. 405-414 
© Krishi Sanskriti Publications 
http://www.krishisanskriti.org/jbaer.html 
 
 

 

Power Quality Disturbences Detection and 
Classification: A Review 

Rahul1 and Rajiv Kapoor2 
1,2

E-mail: 
ECE DEPARTMENT DTU, DELHI, INDIA 

1 , rahulverma_15@yahoo.co.in 2

 
Abstract——In recent years, power quality (PQ) has become a 
significant issue for both utilities and customers. Detection and 
classification of power quality signals is of greater importance both 
in case of Power quality monitoring and to mitigate the power quality 
events. This paper proposes a brief survey for PQ events detection 
and classification technique for several power quality disturbances, 
including voltage sags, swells, oscillatory transients, harmonics, 
spikes, notches etc. PQ events cover a broad frequency range with 
significantly different magnitude variations and can be non-
stationary thus, accurate techniques are required to identify and 
classify these events. This paper presents a comprehensive overview 
of different techniques used for PQ events’ classifications, Fourier 
transform was the core of many traditional techniques however, it is 
increasingly being replaced by newer approaches notably S-
transformed, wavelet transformed , artificial intelligence covering 
fuzzy logic, neural networks and genetic algorithm in power quality 
is covered. The strengths, limitations, and challenges in employing 
the methods are discussed with consideration of the needs and 
expectations when analyzing power quality disturbances.  
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1. INTRODUCTIONS  

Power quality is the concept of powering and grounding 
sensitive equipment in a matter that is suitable to the operation 
of that equipment. In recent years, power quality (PQ) has 
become a significant issue for both utilities and customers. PQ 
issues and the resulting problems are the consequences of the 
increasing use of solid-state switching devices, non-linear and 
power electronically switched loads, unbalanced power 
systems, lighting controls, computer and data processing 
equipment, as well as industrial plant rectifiers and inverters. 
These electronic-type loads cause quasi-static harmonic 
dynamic voltage distortions, inrush, pulse-type current 
phenomenon with excessive harmonics, and high distortion. A 
PQ problem usually involves a variation in the electric service 
voltage or current, such as voltage dips and fluctuations, 
momentary interruptions, harmonics, and oscillatory 
transients, causing failure or inoperability of the power service 
equipment. Hence, to improve PQ, a fast and reliable detection 
of disturbances and sources and causes of such disturbances 
must be known before any appropriate mitigating action can 

be taken. Disturbances are measured by triggering on an 
abnormality in the voltage or the current transient voltages 
may be detected when the peak magnitude exceeds a specified 
threshold. RMS voltage variations (e.g. sags or interruptions) 
may be detected when it exceeds a specified level [71,136]. 
Steady state variation is basically a measure of the magnitude 
by which the voltage or current may vary from the nominal 
value, plus distortion and the degree of unbalance between the 
three phases [1,2]. These include normal rms voltage 
variations, and harmonic and distortion. The power quality 
events can further be classified according to the nature of the 
waveform distortion. For steady-state disturbances, the 
amplitude, frequency, spectrum, modulation, source 
impedance, notch depth and notch area attributes can be 
utilized. However, for non-steady state disturbances, other 
attributes such as rate of rise, rate of occurrence and energy 
potential are useful. The major cause of voltage dips on a 
system is local and remote faults, inductive loading, and 
switch on of large loads[2,3]. Voltage surges appears due to 
Capacitor switching, Switch off of large loads and Phase faults 
[95,122]. Cause of Harmonics on a system is Industrial 
furnaces nonlinear loads Transformers and Rectifier 
equipment[44]. Transients generated due to lightning, 
capacitive switching, Non –linear switching loads, System 
voltage regulation[4]. 

2. SIGNAL PROCESSING TECHNIQUE FOR PQ 
EVENTS DECTECTION 

The selection of appropriate features is extremely important 
for classification of any problem. The features extracted by 
signal processing techniques are used as input to the further 
stages for classification [108,133]. The combination of several 
scalars feature forms the feature vector. For the classification 
of power quality events, the appropriate characteristics should 
be extracted. These characteristics should be chosen to have 
low computation time and can separate disturbances with high 
precision[5]. Therefore, the similarities between these 
characteristics should be few and the number of them must be 
small. Signal processing in tools, concerns the extraction of 
features and information from measured digital signals[45]. A 
wide variety of signal-processing methods have been 
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developed through the years both from the theoretical point of 
view and from the application point of view for a wide range 
of signals including Fourier transform, Short time Fourier 
transform, Wavelet transform, S transform. Fourier transform 
(FT) has been used for extracting the frequency contents of the 
recorded signal[6,7]. According to the frequency contents of 
the signal, some of the PQ problems can be detected. But, FT 
is not suitable for non-stationary signals [80,113]. This is 
because FT provides information only about the existence of a 
certain frequency component, but does not give information 
about component appearance time[46,47]. A suitable way to 
obtain such information is to apply time-frequency signal 
decomposition where time-evolved signal components in 
different frequency bands can be obtained [104,128]. 
Although, STFT can partly alleviate this problem, but STFT 
still has the limitation of a fixed window width i.e. the trade-
off between the frequency resolution and the time 
resolution[49]. 

 

Fig. 1: Power quality disturbances Swell, Sag and Fault.  

Fourier transform of signal x(t)w(t − τ) is defined Short Time 
Fourier Transform (STFT)[8,9].It relies on the assumption that 
the non-stationary signal x(t) can be segmented into sections 
confined by a window boundary w(t) within which it can be 
treated as the stationary one. 

Xw (jw, τ) = ∫ x(t)w(t − τ)e−jwt+∞
−∞     (1) 

Where w (t) =�
0 𝑡𝑡 < 0, 𝑡𝑡 > 𝑡𝑡𝑤𝑤
𝑤𝑤(𝑡𝑡) 0 < 𝑡𝑡 < 𝑡𝑡𝑤𝑤

� 

Due to a fixed window width, STFT is inadequate for the 
analysis of the transient non-stationary signals. Therefore, 
more powerful and efficient methods and techniques are 
required to detect and analyze non-stationary disturbances 
[76,144].Wavelet analysis is a technique used for 
decomposing data into multiple components corresponding to 
different frequency bands[10,11]. This allows one to study 
each component separately. Wavelet analysis is a form of 
time-frequency technique as it evaluates signal simultaneously 

in the time and frequency domains. It uses wavelets, “small 
waves,” which are functions with limited energy and zero 
average. 

∫ 𝜓𝜓(𝑡𝑡)𝑑𝑑𝑡𝑡 = 0+∞
−∞       (2) 

The main advantages of wavelets is that they have a varying 
window size, being wide for slow frequencies and narrow for 
the fast ones, thus leading to an optimal time–frequency 
resolution in all the frequency ranges[50]. The DWT of a 
signal x is calculated by passing it through a series of filters. 
First the samples are passed through a low pass filter with 
impulse response g resulting in a convolution of the two:  

y[n] = (x ∗ g)[n] = ∑ x[k]g[n − k]∞
k=−∞     (3) 

The signal is also decomposed simultaneously using a high-
pass filter h. The outputs giving the detail coefficients (from 
the high-pass filter) and approximation coefficients (from the 
low-pass). It is important that the two filters are related to each 
other and they are known as a quadrature mirror filter[51,52]. 
However, since half the frequencies of the signal have now 
been removed, half the samples can be discarded according to 
Nyquist’s rule. The filter outputs are: 

ylow [n] = ∑ x[k]g[n − k]+∞
−∞      (4)  

yhigh [n] = ∑ x[k]h[2n + 1 − k]+∞
−∞    (5) 

This decomposition has halved the time resolution since only 
half of each filter output characterizes the signal. However, 
each output has half the frequency band of the input so the 
frequency resolution has been doubled. For multi level 
resolution the decomposition is repeated to further increase the 
frequency resolution and the approximation coefficients 
decomposed with high and low pass filters[12,13]. This is 
represented as a binary tree with nodes representing a sub-
space with different time-frequency localization.  

 The Slantlet Transform (SLT) primarily based on an improved 
model of Discrete Wavelet Transform (DWT) has evolved. 
The DWT utilize tree structure for implementation whereas 
the SLT filter-bank is implemented in type of a parallel 
structure with shorter support of component filters[14,15]. 
Data compression and reconstruction of impulse, sag, swell 
harmonics, interruption, oscillatory transient and voltage 
flicker by using two-scale SLT was implemented [73,119]. 
Transforming of input signal by SLT, thresholding of 
transformed coefficients and reconstruction by inverse SLT are 
three main step of proposed method.  

The short term Fourier transforms (STFT) is commonly used 
in time-frequency signal processing. However, one of its 
drawbacks is the fixed width and height of the analyzing 
window[16,17]. This causes misinterpretation of signal 
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components with period longer than the window width; also 
the finite width limits time resolution of high-frequency signal 
components. One solution is to scale the dimensions of the 
analyzing window to accommodate a similar number of cycles 
for each spectral component, as in wavelets. This leads to the 
S-transform introduced by Stockwell, Mansinha and Lowe. 
Like STFT, it is a time-localized Fourier spectrum which 
maintains the absolute phase of each localized frequency 
component. Unlike the STFT, though, the S-transform has a 
window whose height and width frequency varying [105,131]. 
The S-transform was originally defined with a Gaussian 
window whose standard deviation is scaled to be equal to one 
wavelength of the complex Fourier spectrum[18,19]. The 
original expression of S-transform is represented as: 

S(τ, f) = ∫ x(t) |f|
2π

+∞
−∞ e

−(τ−t)2f2
2 e−i2πft dt   (6) 

ST suffers from poor energy concentration in the time-
frequency domain. It gives degradation in time resolution at 
lower frequency and poor frequency resolution at higher 
frequency. In a modified Gaussian window has been proposed 
this scales with the frequency in an efficient manner to provide 
improved energy concentration of the S-transform [89,133]. In 
this improved ST scheme the window function has been 
considered as the same Gaussian window but, an additional 
parameter δ is introduced into the Gaussian window where its 
width varies with frequency [102,129]. The adjustable 
parameter δ represents the number of periods of Fourier 
sinusoid that are contained within one standard deviation of 
the Gaussian window[20]. If δ is too small the Gaussian 
window retains very few cycles of the sinusoid. Hence the 
frequency resolution degrades at higher frequencies. If δ is too 
high the window retains more sinusoids within it. As a result 
the time resolution degrades at lower frequencies [78,124]. It 
indicates that the δ value should be varied judiciously so that it 
would give better energy distribution in the time-frequency 
plane. The trade off between the time-frequency resolutions 
can be reduced by optimally varying the window width with 
the parameter δ. At lower δ value (δ <1) the window widens 
more with less sinusoids within it, thereby it catches the low 
frequency components effectively[21,22]. At higher δ value (δ 
>1) the window width decreases more with more sinusoids 
within it, thereby it resolves the high frequency components 
better. 

Principal component analysis (PCA) technique is also used for 
feature extraction of PQ events[23]. PCA commonly used for 
data analysis using multivariate statistical technique that 
combines data from several variables based on each variable’s 
variance and correlation between different variables [98,130]. 
By calculating eigenvectors this technique is able to obtain the 
main direction of data sample from 3-D space representation 
of voltage in sample matrix form[24,25]. The number of 
significant samples n corresponding to number of row of 
matrix S. The power system samples are column of matrix S. 

After generating the correlation matrix of S, denoted by E. its 
eigen vector (𝜈𝜈) and corresponding eigenvalues (λ), can be 
computed. 

E = ST. S      (7) 

 

Eν = νλ      (8) 

After getting a set of eigenvectors, PCA is able to obtain the 
main directions of the data sample on a new space defined by 
those eigenvectors[64,65]. This set of eigenvectors specifies 
the data main directions. In this new space, it is possible to 
represent a new set of uncorrelated variables as a linear 
combination of the old correlated variables[26]. For extraction 
of PQ events features, establish the reference eigen value 
correspond to the state where there are no disturbances in the 
voltage signal [82,110]. Compute the error between the current 
eigenvalue and the correspondent reference value[55,56]. The 
feature vector is generated using this error and this feature 
vector acts as input for classification technique. It may be 
noted that the PCA is based on the assumption, that the 
dimensionality of data can be efficiently reduced by linear 
transformation and other assumption that most information is 
contained in those directions where input data variance is 
maximum[27,28]. As it is evident, these conditions are by no 
means always met, this is the serious issue with this method. 

The Hilbert Transform (HT) is a signal processing method 
technique which is a linear operator in the mathematics 
[84,145]. The HT of a signal x(t) : H[x(t)] is defined as 

 𝐻𝐻[𝑥𝑥(𝑡𝑡)] = 𝑥𝑥(𝑡𝑡) ∗ 1
𝜋𝜋𝑡𝑡

= 1
𝜋𝜋 ∫

𝑥𝑥(𝜏𝜏)
𝑡𝑡−𝜏𝜏

𝑑𝑑𝜏𝜏 = 1
𝜋𝜋 ∫

𝑥𝑥(𝑡𝑡−𝜏𝜏)
𝜏𝜏

+∞
−∞

+∞
−∞ 𝑑𝑑𝜏𝜏  (9) 

where τ is the shifting operator. The HT can be considered as 
the convolution of x(t) with the signal 1/πt . Clearly the HT of 
a signal x(t) in a time domain is another time domain signal 
H[x(t)] [99,118]. The output of the HT is 90 degree phase shift 
of the original signal. The envelope of the power quality 
disturbances are calculated by using HT. The type of the 
power quality events is detected by the shape of the envelope. 

Some statistical information from the coefficients of HT is 
used. Means, standard deviation, peak value and energy of the 

HT coefficients are employed as input vector of the neural 
network classifier[77,115]. HT poorly suited for detecting 
relative suppressions of power at a specific frequency. 

3. CLASSIFICATION TECHNIQUES 

Both conventional and artificial intelligence (AI) based 
classification methods are review in the literature. The 
limitations of conventional methods are overcome by the AI 
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based methods. Some frequently used AI based classifiers are 
fuzzy classification systems, artificial neural networks and 
support vector machines[29,30]. Neural network is a non-
linear, data driven self adaptive method and is a promising 
tool for classification. These can adjust themselves to the data 

without any explicit specification of functional or 
distributional form for the underlying model. The neural 
network recognizes a given pattern by experience which is 
acquired during the learning or training phase when a set of 
finite examples is presented to the network. This set of finite 
examples is called the training set, and it consists of input 
patterns (i.e., input vector) along with their label of 
classes(i.e., output)[31,32]. In this phase, neurons in the 
network adjust their weight vectors according to certain 
learning rules. 

After the training process is completed, the knowledge needed 
to recognize patterns is stored in the neurons’ weight vectors. 
The network is, then, presented to another set of finite 
examples, i.e. the testing data set, to assess how well the 
network performs the recognition tasks. This process is known 
as testing or generalization. ANN is a universal function 
approximator i.e. this can approximate any function with 
arbitrary accuracy[53,54]. All the above mentioned attributes 
make ANN flexible in modeling real world complex 
problems[33]. 

The Probabilistic neural network (PNN) was first proposed by 
Spetch in 1990[66]. The development of PNN relies on the 
Parzen window concept of multivariate probability estimates. 
The PNN combines the Baye’s strategy for decision-making 
with a non-parametric estimator for obtaining the Probability 
Density Function (PDF). The PNN architecture includes four 
layers; input, pattern, summation, and output layers. The input 
nodes are the set of measurements[67,68]. The second layer 
consists of the Gaussian functions formed using the given set 
of data points as centers. The third layer performs an average 
operation of the outputs from the second layer for each class. 
The fourth layer performs a vote, selecting the largest value. 
The associated class label is then determined. The input layer 
unit does not perform any computation and simply distributes 
the input to the neurons. PNN technique has some drawbacks 
like large memory requirements and slow execution 
networks[34]. 

The RBFN (Radial basis function network) model consists of 
three layers: the inputs and hidden and output layers. The 
input space can either be normalized or an actual 
representation can be used [83,123]. This is then fed to the 
associative cells of the hidden layer, which acts as a transfer 
function. The hidden layer consists of radial basis function like 
a sigmoidal function used in MLP network. The output layer is 
a linear layer. The RBF is similar to Gaussian density function, 
which is designed by the “center” position and “width” 
parameter [107,132]. The RBF gives the maximum output 

when the input to the neuron is at the center and the output 
decreases away from the center [146]. The width parameter 
determines the rate of decrease of the function as the input 
pattern distance increases from the center position. Each 
hidden neuron receives as net input the distance between its 
weight vector and the input vector [88,148]. The output of the 
RBF layer is given as 

Ok = exp(−[X − Ck]T[X − Ck]/2σk2 )   (10)  

K=1,2…..N, where N is the number of hidden nodes. Ok  is the 
output of kth node of hidden layer .X is the input pattern. Ck  is 
the center of RBF of kth mode of the hidden layer. 𝜎𝜎𝑘𝑘  spread 
of the kth RBF. Each neuron in the hidden layer outputs a 
value depending on its weight from the center of the RBF. The 
RBFN uses a Gaussian transfer function in the hidden layer 
and linear function in the output layer [81,120]. The output of 
the jth node of the linear layer is given by 

   Yj = Wj
TOj      (11)  

Where j = 1,2,...,M , where M is the number of output nodes. 
Yj is the output of the jth node. Wj is the weight vector for 
node j. Oj represents output vector from the jth hidden layer. 
Choosing the spread of the RBF depends on the pattern to be 
classified [74,126]. The learning process undertaken by a RBF 
network may be visualized as follows. The linear weights 
associated with the output units of the network tend to evolve 
on a different “time scale” compared to the nonlinear 
activation functions of the hidden units [75,134]. Thus, as the 
hidden layer’s activation functions evolve slowly in 
accordance with some nonlinear optimization strategy, the 
output layer’s weights adjust themselves rapidly through a 
linear optimization strategy [96,139]. The important point to 
note is that the different layers of an RBF network perform 
different tasks, and so it is reasonable to separate the 
optimization of the hidden and output layers of the network by 
using different techniques, and perhaps operating on different 
time scales [72,116]. 

Logistic Model Tree (LMT) is a machine for supervised 
learning issues [79,85]. The LMT combines linear logistic 
regression and tree induction. The LogitBoost algorithm for 
building the structure of logistic regression functions at the 
nodes of a tree is used. Also, the renowned Classification and 
Regression Tree (ACRT) algorithm for pruning are employed. 
The LogitBoost is employed to pick the foremost relevant 
attributes in the data when performing logistic regression by 
performing a simple regression in each iteration and stopping 
before convergence to the maximum likelihood solution 
[90,100]. The LMT does not require any tuning of parameters 
by the user. A LMT includes standard Decision Tree (DT) 
structure with logistic regression functions at the leaves. 
Compared to ordinary DTs, a test on one of the attributes is 
related to every inner node. LMT based classifier used for 
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identification of nine power quality disturbances. Sag, swell, 
interruption, harmonics, transient, and flicker, was studied 
[114,127]. Simultaneously disturbances consisting of sag and 
harmonics, as well as swell and harmonics, are also 
considered. The sampling frequency is 3.2 kHz. The feature 
vector composed of four features extracted by ST method 
[97,141]. The features are based on the Standard Deviation 
(SD) and energy of the transformed signal and are extracted as 
follows: Feature 1: SD of the dataset comprising the elements 
corresponding to the maximum magnitude of each column of 
the S-matrix. Feature 2: Energy of the dataset comprising of 
the elements corresponding to the maximum magnitude of 
each column of the S-matrix [86,103].Feature 3: SD of the 
dataset values corresponding to the maximum value of each 
row of the S-matrix. Feature 4: Energy of the dataset values 
corresponding to the maximum value of each row of the S-
matrix. RBF networks have the disadvantage of requiring 
good coverage of the input space by radial basis functions 
[143]. RBF centers are determined with reference to the 
distribution of the input data, but without reference to the 
prediction task. As a result, representational resources may be 
wasted on areas of the input space that are irrelevant to the 
learning task [101,135]. A common solution is to associate 
each data point with its own centre, although this can make the 
linear system to be solved in the final layer rather large, and 
requires shrinkage techniques to avoid over fitting [91,109]. 

 Support vector machine (SVM) is one more technique for 
power quality events classification [57]. The main purpose of 
the SVM algorithm is to construct an optimal decision 
function, f(x), that accurately predicts unseen data into two 
classes and minimization of classification error[35,36]. 

    f(x) = sign(g(x))   (12)  

The function g(x) in above equation is the decision boundary 
and is derived from set of training samples. Where each 
training sample xi has M features describing a particular 
signature and belongs to one of two classes  

𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, …𝑦𝑦𝑛𝑛},𝑦𝑦𝑦𝑦{−1,1}  (13) 

The decision boundary is called hyperplane[37]. The SVM 
calculates an optimal separating hyperplane by maximizing 
the margin between the separating hyperplane and the data. If 
two classes are linearly separable, the hyperplane f(x) = 0 can 
be determined such that separates the given feature 
vectors[69,70]. 

 f(x) = w. x + b = ∑ wk
m
k=1 . xk + b = 0  (14)  

Where w and b denote the weight vector and the bias term, 
respectively. The position of the separating hyperplane is 
defined by setting these parameters. Thus the separating 
hyperplane satisfy the following constraints: 

𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑦𝑦𝑖𝑖(𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1  (15) 

ξi are positive slack variables that measure the distance 
between the margin and the vectors xi that lie on the incorrect 
side of the margin[58,59]. Then, in order to obtain the optimal 
hyperplane, the following optimization problem must be 
solved[38,39]: 

Minimize 1
 2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖  𝑚𝑚

𝑖𝑖=1  𝑖𝑖…𝑚𝑚   (16) 

Subject to �𝑦𝑦𝑖𝑖
(𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 ≥
� 

Where C is the error penalty. By introducing the Lagrangian 
multipliers αi, the above-mentioned optimization problem is 
transformed into the dual quadratic optimization problem, as 
follows: 

Maximize 𝐿𝐿(𝛼𝛼) = ∑ 𝛼𝛼𝑖𝑖 −
1
2
∑ 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗 𝑦𝑦𝑖𝑖𝑚𝑚
𝑖𝑖 ,𝑗𝑗=1 𝑦𝑦𝑗𝑗 (𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 )𝑚𝑚

𝑖𝑖=1  (17) 

Subject to ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0,𝛼𝛼𝑖𝑖  ≥ 0, 𝑖𝑖 = 1,2 …𝑚𝑚𝑚𝑚
𝑖𝑖=1   (18) 

Thus, the linear decision function is created by solving the 
dual optimization problem, which is defined as: 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗 � + 𝑏𝑏)𝑚𝑚
𝑖𝑖 ,𝑗𝑗=1   (19) 

If the linear classification is not possible, the nonlinear 
mapping function φ can be used to map the original data x into 
a high dimensional feature space that the linear classification 
is possible[60,61]. Then, the nonlinear decision function is: 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑚𝑚
𝑖𝑖 ,𝑗𝑗=1 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ) + 𝑏𝑏)  (20) 

Where K(xi , xj  ) is called the kernel function, K(xi , xj)  =
φ(xi)φ(xj) . Linear, polynomial, Gaussian radial basis 
function and sigmoid are the most commonly used kernel 
functions [62,63]. However, from a practical point of view 
perhaps the most serious problem with SVMs is the high 
algorithmic complexity and extensive memory requirements 
of the required quadratic programming in large-scale tasks 
[41,42]. 

The functionality of an automated pattern recognition system 
can be divided into two basic tasks, the description task 
generates attributes of PQ disturbances using feature 
extraction techniques, and the classification task assigns a 
group label to the PQ disturbance based on those attributes 
with a classifier [93,149]. The description and classification 
tasks work together to determine the most accurate label for 
each unlabeled object analyzed by the pattern recognition 
system. Feature extraction is a critical stage because it reduces 
the dimension of input data to be handled by the classifier 
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[106,125]. The features which truly discriminate among 
groups will assist in identification, while the lack of such 
features can prevent the classification task from arriving at an 
accurate identification. The final result of the description task 
is a set of features, commonly called a feature vector, which 
constitutes a representation of the data. The classification task 
uses a classifier to map a feature vector to a group [121,150]. 
Such a mapping can be specified by hand or, more commonly, 
a training phase is used to induce the mapping from a 
collection of feature vectors known to be the representative of 
the various groups among which discrimination is being 
performed [111,140]. Once formulated, the mapping can be 
used to assign identification to each unlabeled feature vector 
subsequently presented to the classifier[147]. So, it is obvious 
that a good feature extraction technique should be able to 
derive significant feature vectors in an automated way along 
with determining less number of relevant features to 
characterize the complete systems [112,142]. 

4. ANALYSIS 

In literature, large number of reported articles has been used 
various feature sets. Feature set plays key role in any 
classification system. This leaves a question that how these 
features will perform when applied to events therefore, it is 
important to investigate the discriminative power of each PQ 
identification feature proposed in the literature before one may 
use it for the purpose. In view of this, a comprehensive 
analysis is desirable. However, results reported were quite 
encouraging on most occasions, which were obtained using 
only a selected number of events in experimental study.  Table 
1 summarizes some of the benchmark work in PQ analysis 
where RR shows the recognition rate. 

Table 1: Detailed analysis. 

 

The papers by Eristi [115], Hooshmand [111] and Meher [63] 
used Wavelet transform to extract features. WT is an efficient 
tool for Detection & classification of disturbances in power 
quality. The paper by Uyar et al. [72] and Behera et al. [67] 
implemented S-transform because ST has an advantage in that 
it provides multiresolution analysis while retaining the 
absolute phase of each frequency. However most of 

identification performed based on synthetic data vey less 
based on real time events. In Table 1 most of researchers 
calculated the results based on synthetic data. Therefore, real 
time power signal analysis having lots of scope for 
researchers. 

5. CONCLUSION AND FUTURE SCOPE 

This paper presents a detailed survey in the field of power 
quality events analysis technology which is now become main 
area of research in the field of power system. Researchers 
have attempted to characterize the different PQ events using 
different feature set. Artificial intelligence and advanced 
mathematical techniques have become essential to the analysis 
of power quality. The paper presents a survey of literature for 
application of intelligent technique like fuzzy logic, expert 
system and neural networks in power quality. Advanced 
mathematical tool like wavelet theory is also reviewed. 
However, it is concluded that power quality analysis 
technology still need more research especially in the field of 
real time analysis this area is not much explored by the 
researcher still has a way to grow. 
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